skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhuang, Qianlai"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Northern peatlands have been a carbon sink since their initiation. This has been simulated by existing process‐based models. However, most of these models are limited by lacking sufficient processes of the N cycle in peatlands. Here, we use a peatland biogeochemistry model incorporated with N‐related processes of fixation, deposition, gas emission, loss through water flow, net mineralization, plant uptake and litterfall to project the role of the peatlands in future radiative forcing (RF). Simulations from 15‐ka BP to 2100 are conducted driven by CMIP5 climate forcing data of IPSL‐CM5A‐LR and bcc‐csm1‐1, including warming scenarios of RCP 2.6, RCP 4.5 and RCP 8.5. During the Holocene, northern peatlands have an increasing cooling effect with RF up to −0.57 W m−2. By 1990, these peatlands accumulate 408 Pg C and 7.8 Pg N. Under warming, increasing mineral N content enhances plant net primary productivity; the cooling effect persists. However, RF increases by 0.1–0.5 W m−2during the 21st century, mainly due to the stimulated CH4emissions. Northern peatlands could switch from a C sink to a source when the annual temperature exceeds −2.2 to −0.5°C. This study highlights that the improved N cycle causes higher CO2‐C sink capacity in northern peatlands. However, it also causes a significant increase in CH4emissions, which weakens the cooling effect of northern peatlands in future climate. 
    more » « less
  2. Abstract Floodplains lakes are abundant in the Amazon basin and are important methane sources to the atmosphere. Existing biogeochemical models require modifications and inclusion of hydrodynamic processes operative in shallow, warm waters to be applied to these aquatic ecosystems. We modified a 1‐dimensional process‐based, lake biogeochemical model and combined a 3‐dimensional hydrodynamic model to suit Amazon floodplains. We evaluated the combined model's performance simulating methane concentrations and fluxes and several related processes in the open lake and an embayment of a well‐studied Amazon lake. Parameters for calibration were selected through sensitivity tests using a machine learning‐based algorithm, classification, and regression trees. Comparison between simulated and measured fluxes indicate generally good agreement in seasonal patterns and magnitudes. Comparisons of near‐surface concentrations varied with no clear patterns. Simulations of methane concentrations at near‐surface and near‐bottom, and diffusive emissions are most sensitive to carbon mineralization rate, Q10factors for methanogenesis and oxidation, and methane oxidation potential. Modeled rates of planktonic photosynthesis were generally lower than measurements, though simulated planktonic respiration was often similar to measurements. Simulated rates of methane oxidation were considerably lower, with a few exceptions, than measurements of methane oxidation in oxic water of the lake. Improvements of results of the linked hydrodynamic‐biogeochemical model will result from inclusion of advective transport, use of parameter values appropriate for tropical waters, especially for methane oxidation and photosynthesis, and addition of changes in hydrostatic pressure to model of ebullition. 
    more » « less
  3. Abstract Permafrost dynamics can drastically affect vegetation and soil carbon dynamics in northern high latitudes. Vegetation has significant influences on the energy balance of soil surface by impacting the short-wave radiation, long-wave radiation and surface sensible heat flux, affecting soil thermal dynamics, in turn, inducing vegetation shift, affecting carbon cycling. During winter, snow can also significantly impact soil temperature due to its insulative effect. However, these processes have not been fully modeled to date. To quantify the interactions between vegetation, snow, and soil thermal dynamics and their impacts on carbon dynamics over the circumpolar region (45–90° N), we revise a sophisticated ecosystem model to improve simulations of soil temperature profile and their influences on vegetation, ecosystem carbon pools and fluxes. We find that, with warmer soil temperature in winter and cooler soil temperature in summer simulated with the revised model considering vegetation shift and snow effects, the region will release 1.54 Pg C/year to the atmosphere for present-day and 66.77–87.95 Pg C in 2022–2100. The canopy effects due to vegetation shift, however, will get more carbon sequestered into the ecosystem at 1.00 Pg C/year for present day and 36.09–44.32 Pg C/year in 2022–2100. This study highlights the importance to consider the interactions between snow, vegetation shift and soil thermal dynamics in simulating carbon dynamics in the region. 
    more » « less
  4. Abstract. Northern peatlands have been a large C sink during the Holocene,but whether they will keep being a C sink under future climate change isuncertain. This study simulates the responses of northern peatlands tofuture climate until 2300 with a Peatland version Terrestrial EcosystemModel (PTEM). The simulations are driven with two sets of CMIP5 climate data(IPSL-CM5A-LR and bcc-csm1-1) under three warming scenarios (RCPs 2.6, 4.5 and8.5). Peatland area expansion, shrinkage, and C accumulation anddecomposition are modeled. In the 21st century, northern peatlands areprojected to be a C source of 1.2–13.3 Pg C under all climate scenariosexcept for RCP 2.6 of bcc-csm1-1 (a sink of 0.8 Pg C). During 2100–2300,northern peatlands under all scenarios are a C source under IPSL-CM5A-LRscenarios, being larger sources than bcc-csm1-1 scenarios (5.9–118.3 vs.0.7–87.6 Pg C). C sources are attributed to (1) the peatland water table depth(WTD) becoming deeper and permafrost thaw increasing decomposition rate; (2) net primary production (NPP) not increasing much as climate warms becausepeat drying suppresses net N mineralization; and (3) as WTD deepens,peatlands switching from moss–herbaceous dominated to moss–woody dominated,while woody plants require more N for productivity. Under IPSL-CM5A-LRscenarios, northern peatlands remain as a C sink until the pan-Arctic annualtemperature reaches −2.6 to −2.89 ∘C, while this threshold is −2.09to −2.35 ∘C under bcc-csm1-1 scenarios. This study predicts anorthern peatland sink-to-source shift in around 2050, earlier than previousestimates of after 2100, and emphasizes the vulnerability of northernpeatlands to climate change. 
    more » « less
  5. Abstract. Wetlands and freshwater bodies (mainly lakes) are the largestnatural sources of the greenhouse gas CH4 to the atmosphere. Great effortshave been made to quantify these source emissions and their uncertainties.Previous research suggests that there might be significant uncertaintiescoming from “double accounting” emissions from freshwater bodies andwetlands. Here we quantify the methane emissions from both land andfreshwater bodies in the pan-Arctic with two process-based biogeochemistrymodels by minimizing the double accounting at the landscape scale. Twonon-overlapping dynamic areal change datasets are used to drive the models.We estimate that the total methane emissions from the pan-Arctic are 36.46 ± 1.02 Tg CH4 yr−1 during 2000–2015, of which wetlands andfreshwater bodies are 21.69 ± 0.59 Tg CH4 yr−1 and 14.76 ± 0.44 Tg CH4 yr−1, respectively. Our estimation narrows thedifference between previous bottom-up (53.9 Tg CH4 yr−1) andtop-down (29 Tg CH4 yr−1) estimates. Our correlation analysisshows that air temperature is the most important driver for methane emissionsof inland water systems. Wetland emissions are also significantly affected byvapor pressure, while lake emissions are more influenced by precipitation andlandscape areal changes. Sensitivity tests indicate that pan-Arctic lakeCH4 emissions were highly influenced by air temperature but less bylake sediment carbon increase. 
    more » « less
  6. null (Ed.)
    Abstract Wildfires are a major disturbance to forest carbon (C) balance through both immediate combustion emissions and post-fire ecosystem dynamics. Here we used a process-based biogeochemistry model, the Terrestrial Ecosystem Model (TEM), to simulate C budget in Alaska and Canada during 1986–2016, as impacted by fire disturbances. We extracted the data of difference Normalized Burn Ratio (dNBR) for fires from Landsat TM/ETM imagery and estimated the proportion of vegetation and soil C combustion. We observed that the region was a C source of 2.74 Pg C during the 31-year period. The observed C loss, 57.1 Tg C year −1 , was attributed to fire emissions, overwhelming the net ecosystem production (1.9 Tg C year −1 ) in the region. Our simulated direct emissions for Alaska and Canada are within the range of field measurements and other model estimates. As burn severity increased, combustion emission tended to switch from vegetation origin towards soil origin. When dNBR is below 300, fires increase soil temperature and decrease soil moisture and thus, enhance soil respiration. However, the post-fire soil respiration decreases for moderate or high burn severity. The proportion of post-fire soil emission in total emissions increased with burn severity. Net nitrogen mineralization gradually recovered after fire, enhancing net primary production. Net ecosystem production recovered fast under higher burn severities. The impact of fire disturbance on the C balance of northern ecosystems and the associated uncertainties can be better characterized with long-term, prior-, during- and post-disturbance data across the geospatial spectrum. Our findings suggest that the regional source of carbon to the atmosphere will persist if the observed forest wildfire occurrence and severity continues into the future. 
    more » « less
  7. Abstract Process‐based land surface models are important tools for estimating global wetland methane (CH4) emissions and projecting their behavior across space and time. So far there are no performance assessments of model responses to drivers at multiple time scales. In this study, we apply wavelet analysis to identify the dominant time scales contributing to model uncertainty in the frequency domain. We evaluate seven wetland models at 23 eddy covariance tower sites. Our study first characterizes site‐level patterns of freshwater wetland CH4fluxes (FCH4) at different time scales. A Monte Carlo approach was developed to incorporate flux observation error to avoid misidentification of the time scales that dominate model error. Our results suggest that (a) significant model‐observation disagreements are mainly at multi‐day time scales (<15 days); (b) most of the models can capture the CH4variability at monthly and seasonal time scales (>32 days) for the boreal and Arctic tundra wetland sites but have significant bias in variability at seasonal time scales for temperate and tropical/subtropical sites; (c) model errors exhibit increasing power spectrum as time scale increases, indicating that biases at time scales <5 days could contribute to persistent systematic biases on longer time scales; and (d) differences in error pattern are related to model structure (e.g., proxy of CH4production). Our evaluation suggests the need to accurately replicate FCH4variability, especially at short time scales, in future wetland CH4model developments. 
    more » « less
  8. Abstract Atmospheric concentrations of methane, a powerful greenhouse gas, have strongly increased since 2007. Measurements of stable carbon isotopes of methane can constrain emissions if the isotopic compositions are known; however, isotopic compositions of methane emissions from wetlands are poorly constrained despite their importance. Here, we use a process-based biogeochemistry model to calculate the stable carbon isotopic composition of global wetland methane emissions. We estimate a mean global signature of −61.3 ± 0.7‰ and find that tropical wetland emissions are enriched by ~11‰ relative to boreal wetlands. Our model shows improved resolution of regional, latitudinal and global variations in isotopic composition of wetland emissions. Atmospheric simulation scenarios with the improved wetland isotopic composition suggest that increases in atmospheric methane since 2007 are attributable to rising microbial emissions. Our findings substantially reduce uncertainty in the stable carbon isotopic composition of methane emissions from wetlands and improve understanding of the global methane budget. 
    more » « less